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Abstract
Active learning has long been a topic of
study in machine learning. However, as
increasingly complex and opaque models
have become standard practice, the process
of active learning, too, has become more
opaque. There has been little investigation
into interpreting what specific trends and
patterns an active learning strategy may be
exploring. This work expands on the Local
Interpretable Model-agnostic Explanations
framework (LIME) to provide explanations
for active learning recommendations. We
demonstrate how LIME can be used to
generate locally faithful explanations for
an active learning strategy, and how these
explanations can be used to understand
how different models and datasets explore
a problem space over time.

In order to quantify the per-subgroup
differences in how an active learning strat-
egy queries spatial regions, we introduce a
notion of uncertainty bias (based on dis-
parate impact) to measure the discrepancy
in the confidence for a model’s predictions
between one subgroup and another. Using
the uncertainty bias measure, we show that
our query explanations accurately reflect
the subgroup focus of the active learning
queries, allowing for an interpretable expla-
nation of what is being learned as points
with similar sources of uncertainty have
their uncertainty bias resolved. We demon-
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strate that this technique can be applied
to track uncertainty bias over user-defined
clusters or automatically generated clusters
based on the source of uncertainty.

Keywords: Interpretability; Active learn-
ing.

1. Introduction

The importance of interpretability and explain-
ability of machine-learned decisions has recently
been an area of active interest, with the EU
even declaring what has been called a “right to
an explanation” Goodman and Flaxman (2016).
In traditional machine learning contexts, the fo-
cus of interpretability has been two-fold, first on
the receiver of the decision (“why was I rejected
for this job?”) and second on the model creator
(“why is my model giving these answers?”).

Here, we extend this interest in interpretability
to active learning, a domain in which the expla-
nation is additionally of interest to the labeler
(“why am I being asked these questions and why
is it worth it to answer?”). Since active learning
is generally applied in scenarios such as drug dis-
covery where it is expensive (whether in terms of
time or money) to label a query, the labeler in
these contexts is often a domain expert in their
own right (e.g., a chemist). Given this, a query
explanation can serve as a way to both justify an
expensive request and allow the domain expert
to give feedback to the model.

1.1. Results

We demonstrate how active learning choices can
be made more interpretable to non-experts. Us-
ing per-query explanations of uncertainty, we de-
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velop a system that allows experts to choose
whether to label a query. This allows experts
to incorporate domain knowledge and their own
interests into the labeling process. In addition,
we introduce a quantified notion of uncertainty
bias, the idea that an algorithm may be less cer-
tain about its decisions on some data clusters
than others. In the context of decision-making
about people, this may mean that some protected
groups (e.g., race or gender) may receive less fa-
vorable decisions due to risk aversion Goodman
and Flaxman (2016). In the context of active
learning, this means that these groups are more
likely to be targeted for exploratory queries in or-
der to improve the model. We combine this idea
with the explanations generated per query to de-
scribe the groups most targeted by uncertainty
bias. More broadly, these techniques allow us to
make active learning interpretable to expert la-
belers, so that queries and query batches can be
explained and the uncertainty bias can be tracked
via interpretable clusters.

2. Related Work

Active Learning Active learning has a long
history detailed in a comprehensive survey by
Settles (2009). Our work will focus on explain-
ing query uncertainty. Uncertainty querying for
active learning was first proposed by Lewis and
Gale (1994). Since then, it has become perhaps
the most common strategy for active learning
and several strategies for quantifying uncertainty
have been developed Settles (2009). Strategies
used to quantify uncertainty for actively learn-
ing multi-class classification problems include se-
lecting the sample with the minimum maximum-
class probability, selecting the sample with the
minimum difference in probabilities between the
two most probable classes, and choosing the sam-
ple with maximal label entropy. All three of
the above strategies are equivalent for the binary
classification tasks we will focus on in this paper
Settles (2009).
Related to our focus on the added impact of

a domain expert on an active learning system,
Baldridge and Palmer. (2009) focus on evaluat-
ing the strength of active versus passive learning
with expert versus novice labelers. They found
that the domain expert was able to take advan-
tage of the more effective active learning setting,

while the novice labeler did not provide the ex-
pected increase in performance from active learn-
ing. While that work focused on the impact of an
expert on the labeling process, we will focus on
the impact of an expert on the choice of query to
label. Perhaps the closest work to what we pro-
pose here is the work of Glass (2006), which fo-
cuses on explaining preference learning results to
users of a scheduling system. However, that work
aims to explain the way the preferences have been
updated in a way that is specific to the model
and domain problem, while we focus on explain-
ing the choice of query using a general model in
any application area.

Interpretability Another area of direct im-
portance to this paper is interpretable machine
learning. Recent work on interpretability has in-
cluded both local explanations about an individ-
ual’s decision Ribeiro et al. (2016) and global
explanations about the model’s actions overall,
including interpretable techniques in clustering
Chen et al. (2016), integer programming Zeng
et al. (2016), rule lists Wang and Rudin (2015),
and methods for understanding deep nets Zeiler
and Fergus (2014); Le et al. (2011) in addition to
historical work on decision trees Quinlan (1993)
and random forests Breiman (2001).

LIME We will build specifically on a method
for creating local explanations introduced in
Ribeiro et al. (2016). Local Interpretable Model-
Agnostic Explanations (LIME) is a framework
for generating locally faithful explanations for an
otherwise opaque machine learning model. LIME
does this by taking a given point and perturbing
it to generate many hypothetical points in the
neighborhood of a query point and then train-
ing an interpretable model on this hypothetical
neighborhood. More specifically, LIME generates
an explanation for the prediction f(x) for a se-
lected point x and a given a global classifier f .
To generate this explanation, LIME requires a
number of samples N , a similarity kernel π, a
discretizer d, and a number of attributes K to
use for the explanation. LIME begins by gen-
erating N vectors with Gaussian random noise
scaled to the mean variance of the dataset as a
whole. The discretization method d transforms
points from a continuous representation to a cat-
egorical one by reducing the values into bins. A
local regressor is fit to the generated points and
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the global model’s predicted class probabilities.
This model is used to select features by itera-
tively re-fitting and greedily adding them to the
model until K features are found. 1 The similar-
ity kernel π is used to upweight points near the
query point.Finally, LIME returns the chosen K
features and their weights in the final local model
as the explanation for f(x).

3. Explaining Active Learning
Queries

We propose an application of LIME to explain
the uncertainty for an individual points. For a
query point x, the classifier f has some certainty
function c. Using LIME, we generate the local
sample of N points and fit a local regressor to
these points (weighted by the kernel π) and the
certainties provided by c. Using the standard
LIME methodology, we generate explanations for
a point’s uncertainty rather than it’s decision be-
tween two classes. To explain this technique fur-
ther, we’ll describe the method on a toy dataset.

Toy dataset Four Gaussian distributions with
unit variance are created and centered at
(−3,−3), (3,−3), (3, 3), and (−3, 3) and labeled
so that the first two represent one class and the
second another. Fifty initial points are randomly
selected from the Gaussian at (−3,−3) and (3, 3)
to be labeled. The points have been purpose-
fully drawn so as to label none of the points from
the Gaussians centered in the second and fourth
quadrants. An initial logistic regression model,
f , is trained on the 50 labeled points.

Based on the resulting model of the probabil-
ity distribution, the certainty scores c across the
problem space are mapped. The labeled points,
decision boundary, and certainty scores can be
seen in Figure 1. LIME allows us to take an
individual point and explain a local regressor
around the uncertainty for said point, generat-
ing our resulting uncertainty explanation. Each
uncertainty explanation is composed of one in-
equality constraint for each of the included K
features, generating an associated uncertainty re-
gion bounded by those constraints.

1. Alternatively, the features with the highest weights
could be used or, if utilizing LASSO, the LASSO reg-
ularization path could be used.

3.1. Experiments

In addition to our toy dataset described above,
we will perform experiments on the ProPublica
dataset for recidivism prediction Angwin et al.
(2016) as well as the Dark Reactions Project
dataset of chemical reactions for synthesis pre-
diction Raccuglia et al. (2016).

ProPublica dataset The ProPublica dataset
includes attributes describing the sex, age, race,
juvenile felony and misdemeanor counts, number
of adult priors, charge degree (felony or misde-
meanor), and charge description for 6172 peo-
ple arrested in Broward County, Florida, along
with a boolean value indicating whether they
were rearrested within two years of the original
arrest date. We followed the cleaning steps rec-
ommended by Angwin et al. (2016)2 and used
a logistic regression model trained on an initial
pool of 400 randomly selected points.

Dark Reactions Project dataset The Dark
Reactions Project dataset includes 6114 hy-
drothermal synthesis reactions and 274 attributes
describing chemical properties that might pre-
dict the associated boolean classification indicat-
ing whether the experiment successfully created
a crystalline product or not. To predict this out-
come, we used AdaBoost with 200 decision stump
weak learners. The certainty function thus es-
timates the probability of each class through a
weighted average of the fraction of training sam-
ples within each leaf of the decision stumps.

LIME Setup Our experiments use LIME
Ribeiro et al. (2016) to explain continuous (re-
gressor) predictions.3,4 We apply this to our ac-
tive learning selection criterion. Ridge regression
is the local ‘interpretable’ model to estimate fea-
ture importance, as that is the default in the
LIME library. This can be changed without al-
tering our general framework. Continuous fea-
tures were split into at most 8 bins by greedily
maximizing information gain to make the splits.
A value K for the length of explanations to use
is also selected; K = 2 for the toy and ProPub-
lica datasets and K = 6 for the Dark Reactions
dataset.

2. https://github.com/propublica/compas-analysis
3. https://github.com/marcotcr/lime/
4. https://github.com/datascienceinc/lime
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Figure 1: Left: Labeled starting pool. Center: Certainty over the problem space. The black points
represent unlabeled points in the pool, blue represents regions of certainty, and red rep-
resents uncertainty. The large black point is the example query. Right: The LIME
uncertainty explanation for the model’s prediction of 95% uncertainty for the black point
at (0, 5). The associated uncertainty region is shown dashed in the center figure.

On each of these datasets and initially trained
models, we performed active learning using un-
certainty sampling to maximize the class proba-
bility. Using the technique described above, we
were able to explain each query before it was la-
beled.

ProPublica data set On the ProPub-
lica data set, an example query instance
with attributes sex = Male, age = 34,
race = African − American, age category =
25 − 45, juvenile felony count = 2,
juvenile misdemeanor count = 1,
priors count = 21, and charge degree =
felony was found to have certainty 0.88. The
generated uncertainty explanation was:

priors count > 20 weight: 0.3 and
sex Male > 0.5 weight: -0.04

This means that this query point is fairly
certain, primarily due to the high number of
prior convictions. However, the fact that this
person is a male slightly reduces the classifier’s
certainty for this point (indicated by the negative
weight), perhaps due to the higher variance in
recidivism for men than for women.

Dark Reactions data set An example Dark
Reactions uncertain query is the reaction with
0.1648 grams of Oxovanadium(2+) sulfate,
1.2995 grams of Selenium dioxide, and 0.1166
grams of 1,4-dimethylpiperazine heated at a

temperature of 110 Celsius, with a pH of 4,
for 24 hours with a slow cooling process. The
resulting uncertainty explanation was:

1.76 < PaulingElectronegGeom <= 1.89 and
1.76 < PaulingElectronegMean <= 1.91 and

orgminimalprojectionradiusMax <= 2.84 and
slowCool = True and

orghbdamsaccGeomAvg <= 0.99 and
numberInorg = 2

Normally, a reaction with lopsided ratios of
the inorganic reactants would be likely to fail,
however the small organic molecule projection
radius indicates a common family of organic
templates used successfully in the Dark Re-
action Project, and the slow cool attribute
increases the likelihood of a reaction succeed-
ing, thus explaining the uncertainty in this
query. Note that there is an overlap in the
uncertainty ranges for PaulingElectronegMean

and PaulingElectronegGeom. This makes
sense as these features encode almost the same
information: the former is the mean and the
latter is the geometric mean.

4. Identifying Uncertainty Bias

In order to provide an interpretable explanation
of how active learning is proceeding as a whole,
and not just an explanation for a single query as
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provided in the previous section, we will be in-
terested in tracking how subgroups of the data
are collectively queried based on their uncer-
tainty. The developed uncertainty explanations
are made of a set of constraints that bound an
uncertainty region that can be useful for group-
ing contained points based on identical sources of
uncertainty. We expect points explored in an un-
certainty region to increase the certainty we have
about other points in that region (that have the
same sources of uncertainty).5

In situations where some instance populations
are smaller (e.g., minority groups in a dataset
where each item is a person) or where the initial
training data distribution is skewed, the active
learner may prefer queries that are disproportion-
ately drawn from a single uncertainty region (or
population group). For example, in our toy ex-
ample above, we saw that the upper left quadrant
is underrepresented in the labeled dataset. The
points in this region have higher uncertainty and
were more likely to be targeted for active learn-
ing queries. In order to understand both what
and how an active learning method is learning
and whether there is skew in the uncertainty re-
gions (subgroups) targeted to be labeled, we will
quantify the uncertainty bias of a subgroup.

Definition 1 (Uncertainty bias) Given a
dataset D = (X, U) with d-dimensional feature
vector X and corresponding (discrete) uncertainty
labels U and its disjoint set R of uncertainty
regions (groups), let Xr = {x ∈ X|x ∈ r, r ∈ R}
be the items of the dataset within a region r ∈ R.
U takes values + (certain) and − (uncertain).
The uncertainty bias with respect to region r ∈ R
is defined to be:

1− Pr(U = +|x ∈ r)

Pr(U = +|x ∈ R \ r)

Note that this uncertainty definition is the same
as 1−DI where DI is the disparate impact value
Feldman et al. (2015) applied where the region of
focus is the protected class and the positive value
is a label of +. For the purposes of this work, we
consider any point with certainty greater than or
equal to the median over our pool to be certain
(U = +). Discrete classes of uncertainty are used

5. In this work, LIME defined boundaries that together
form a region are mutually exclusive sets, but this is
not required for the technique.

instead of continuous conditional probabilities to
follow the existing literature defining disparate
impact in law and machine learning Barocas and
Selbst (2016); Feldman et al. (2015). Although
we use discrete classes to calculate this definition,
we use the actual uncertainty value for creating
the explanations, as described in Section 3.

The goal of this definition is to identify sub-
groups that differ from the majority in terms of
their uncertainty in the classifier, i.e., it is as-
sumed that a good outcome would be for all sub-
groups to have the same amount of uncertainty.
In the context where subgroups are protected
groups (e.g., race or gender), this goal translates
to an aim to identify subgroups that might be dis-
proportionately queried. Such subgroups might
be subject to harms due to these queries (e.g., ex-
tra law enforcement scrutiny) or due to the uncer-
tainty about their subgroup (e.g., risk aversion)
Goodman and Flaxman (2016), and this defini-
tion coupled with the associated interpretability
methods aims to help identify and explain the
sources of uncertainty for these groups.

4.1. Tracking Uncertainty Bias Over
Time

There are many possible uncertainty regions that
could be analyzed for uncertainty bias. Often, a
domain expert may have a specific set of features
that they are interested in exploring. In this set
of experiments, we’ll assume such feature sets are
given (in Section 6 we’ll consider how to perform
this analysis when they are not). Using active
learning with uncertainty sampling, these exper-
iments track both the per-region count of chosen
queries and the uncertainty bias per uncertainty
region with each queried point.

Toy dataset In order to test the technique,
we first perform these experiments on our toy
dataset. Given the randomness of the choice of
initial training set, results are averaged over 50
runs. From our knowledge of the toy dataset, we
know that each quadrant has a centered distri-
bution and so it makes sense to track the uncer-
tainty bias using each of the four quadrants as
an uncertainty region. We would expect to see
the uncertainty bias of Quadrants 2 and 4, which
begin with no points in the initial training set,
start high and then fall. Indeed, the results on
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the toy dataset (see Figure 2) are consistent with
these expectations.

60 80 100 120 140
Total Num ber of Points

0

5

10

15

20

25

30

P
o

in
ts

 P
e

r 
E

x
p

la
n

a
to

ry
 R

e
g

io
n

60 80 100 120 140
Total Number of Points Added

−1.0

−0.5

0.0

0.5

1.0

U
n
ce
rt
a
in
ty
 B
ia
s

Figure 2: Left: Average counts of points taken
from each quadrant during 50 ac-
tive learning runs on the toy dataset.
Right: Uncertainty bias per quadrant
over 50 active learning runs.

ProPublica dataset We next consider the
ProPublica recidivism prediction dataset. Since
one of the main questions about this data is its
potential for negative racial impact when used
in classification, a natural question to consider is
whether there is uncertainty bias when regions
group people by race. Using the same exper-
imental setup, we tested the model for uncer-
tainty bias based on race with each point added
to our pool. The results can be found in Fig-
ure 3. It is evident that, from the very begin-
ning, there is a notable disparity in our model’s
ability to make confident predictions between the
different racial categories. While active learning
seems to resolve most of the difference in uncer-
tainty bias between the people labeled ‘White’
and ‘Hispanic,’ Black people arrested in Broward
County were subject to considerable uncertainty
bias by our logistic regression model even after
2000 more points were actively queried. This is
true even considering that there are more Black
people

4.2. The Impact of the Initial Pool on
Long-Term Uncertainty Bias

One of the major lasting issues with many meth-
ods of active learning is sampling bias. Under the
assumption that the initial labeled pool was se-
lected randomly, sampling bias refers to the trend
that this initially representative sample will di-
verge further from the true distribution during

active learning as we overemphasize boundary-
hugging points. In reality, initial labeled pools
are generally not randomly sampled, but have
been selected by humans based on some nonran-
dom criteria. With this in mind, we consider
whether or not an active learning algorithm can
help compensate for disparities in an initial train-
ing set over time to remedy disparities that may
exist.

The race-label subclasses on the Propublica
data seem to imply that active learning does not
resolve human-introduced disparities in the ini-
tial dataset. However, we would like to explore
what the effect of the initial dataset is. That
is, does an initially highly biased dataset tend to
stay biased under an active learning regime more
than a lightly biased dataset? Will remedying
biases in an initial dataset encourage parity be-
tween subgroups over the long term?

Propublica Data To explore the effect that
the uncertainty bias of the initial pool has on the
long-term uncertainty bias between groups, we
generated 150 different starting pools. Each pool
had 400 labeled, randomly selected candidates,
just as in the previous ProPublica experiment.
For each of these starting pools, we recorded the
initial uncertainty bias for each racial subgroup
and the uncertainty biases as we actively labeled
1500 queries one at a time for each starting pool.
The results are shown in Figure 4.6 The x-axis
values represent the initial starting uncertainty
for every racial subgroup in each run. The y-axis
values represent the uncertainty biases at the end
of each trial.

Within each racial subgroup, there is a clear
positive trend between the initial uncertainty
bias and the resulting uncertainty bias after the
1500 additional points are actively queried. This
supports our hypothesis that the initial relative
uncertainties have lasting effects on the uncer-
tainty bias of the model over the labeled set.
That the resulting dataset remains proportion-
ally biased after it has more than quadrupled
in size, from 400 labeled points to 1900, im-
plies strong and long-lasting effects for the initial
pool. This is true even though there are more

6. For black people in the dataset, the coefficient of
determination was r2 = 0.2586, for white people
r2 = 0.2390, and for hispanic people r2 = 0.1163.
Overall r2 = 0.8808, but we do not necessarily expect
a linear model to fit the data.
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Figure 3: Left: The proportion of the three subpopulations conditioned on race that were either in
the initial set or have since been queried by the active learning algorithm for the ProPublica
dataset experiment. Right: The corresponding uncertainty bias for each subpopulation
conditioned on race as active learning queries are made.

Black defendants in the dataset than white de-
fendants (3,175 vs. 2,103 for the whole dataset).
This implies that researchers should take greater
care when manually assembling initial labeled
datasets. That is, researchers should seek to rec-
tify biases in an initial dataset before applying
active learning. Otherwise, these biases will be
perpetuated even as the active learning algorithm
progresses. With that said, however, the limited
size of the ProPublica dataset limits our ability to
explore how long lasting the effects of the initial
pool can actually be. Figure 4 is also notable in
that it clearly illustrates the racial hierarchy that
is reestablished with each initial random pool and
active learning run.

Now that we have illustrated the utility of un-
certainty bias in measuring the relative progress
of subgroups in a dataset over a period of ac-
tive learning, we can aim it at evaluating a novel
batching strategy centered around uncertainty
explanations.

5. Batching Based on Uncertainty

In practice, performing queries one-by-one can
be highly inefficient. For instance, conduct-

ing biological or chemical experiments is time-
consuming, but multiple experiments can be con-
ducted at the same time. So in these settings it is
more efficient to get a batch of queries, conduct
several experiments at once, and provide a batch
of labels (see, e.g, the drug discovery batch ac-
tive learning process employed in Warmuth et al.
(2002)). There are also interpretability consid-
erations for one-by-one queries. That is, sin-
gle queries may make it difficult for researchers
to balance long term goals. For instance, sin-
gle recommendations provide little indication of
what long term patterns will be explored. Single
queries may also hinder researchers from forming
hypotheses before exploring problem sub-spaces,
which may lead to retrospective justifications or
possible inefficiencies in experimental design.

Instead of simply providing a batch of queries
that are expected to improve the underlying
model the most, our goal is to provide a batch
that also has the same uncertainty source, so that
a single explanation of uncertainty can be pro-
vided to the oracle for the whole batch.
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Figure 4: Initial uncertainty biases for the three
racial subgroups versus uncertainty bi-
ases after 1500 actively learned points
have been added to the labeled dataset
for 150 runs. Note the clear positive
trend for each subgroup. This trend
shows that initial uncertainty bias is
highly influential on the latter uncer-
tainty bias.

5.1. Creating Interpretable Batches

In order to create batches with an explainable un-
certainty source, we consider each uncertainty re-
gion as a candidate for batch selection within that
region instead of from the entire pool. The batch
selected from an uncertainty region is likely to
have lower variance within the batch compared to
a batch selected from the entire pool. Although
this reduction in variance may lead to a perfor-
mance loss, the benefits to this batch selection
strategy will be in its interpretability.
The number of unlabeled instances that are

within an uncertainty region varies in size for dif-
ferent queries. It is possible that the number of
unlabeled instances is smaller than the desired
batch size. In order to cope with this, a bigger
batch consisting of several smaller batches can be
used. When the number of unlabeled instances
is larger than the batch size, a query selection
strategy should be used where instances within
the uncertainty region serve as the pool.

Once a batch is chosen from an uncertainty
region, all queries share the same uncertainty ex-
planation. In addition, the specific items in the
batch can be explained to the labeler by identi-
fying the subset of features most useful to the la-
beler for interpretability and displaying the range
or variation in those features within the batch.

5.2. Experiments

On the Dark Reactions data set, we evaluated 4
batch selection strategies within positive uncer-
tainty regions: Q-best, where the highest uncer-
tainty instances were chosen (a random selection)
and k-means, both where the instance closest to
the center was chosen and where the most un-
certain instance in the cluster was included in
the batch. Evaluating the resulting quality of
the model using the Matthews Correlation Co-
efficient (a measure that takes into account true
and false positives and negatives) and a batch
size of 50, k-means (with k = 50) when the most
uncertain instance per cluster was the best batch
selection strategy for this data (see Figure 5).
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Figure 5: A comparison of batch selection strate-
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tainty regions on the Dark Reactions
data set.
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Using this batch selection strategy and the in-
terpretability method above to describe the un-
certainty region, we were able to generate expla-
nations of uncertainty associated with each cho-
sen batch (with a batch size of 20). A subset of
the features were chosen corresponding to the re-
actants and other experimental parameters that
would be understandable to a human labeler (a
chemist). The variety of these features within the
chosen batch was then described.

One example explanation is shown in Figure
6. This specific query takes two similar organic
templating molecules (listed next to ‘org1’) and
varies the manual experimental parameters for
reactions that have high value as active learn-
ing candidates. While every combination of the
listed parameters may not be included in the
batch, it is clear that this batch is exploring a spe-
cific organic templating structure over a varied
swath of inorganic compounds, times, and pHs.
Although there is likely some overlap in the infor-
mation that these reactions will provide, they will
make a model able to make much stronger pre-
dictions for reactions with similar organic tem-
plating molecules and may quickly create a more
developed local hypothesis space relative to stan-
dard batching techniques as we vary the axes on
which uncertainty is explored.

Figure 6: An example explanation for a query
batch from the Dark Reactions chemi-
cal data set.

6. Interpretable Uncertainty
Clusters

In order to look at the idea of grouping things
based on their sources of uncertainty in a more
flexible and precise way, we will generate clusters
based on point uncertainty explanations. After
we generate LIME explanations of uncertainty,
we generate a new encoding for our points based
on the explanation constraints and the weights
that LIME assigns to them. That is, we con-
struct a one-hot encoding of the categorical con-
straints that LIME provides and then replace the
values where a LIME explanation constraint is
present with the weight LIME provides for that
feature. This means that for a set of possible un-
certainty labels U , all of our original data points
have an equivalent point in our encoding space
IR|U |. Utilizing the weights instead of a stan-
dard one-hot encoding allows us to discriminate
between different magnitudes of a feature’s con-
tribution to the local certainty estimate as well
as between LIME explanations that indicate cer-
tainty and those that indicate uncertainty. As
either direction will make a feature influential on
the total uncertainty, LIME will provide expla-
nations comprised of both. This is an improve-
ment over the batch technique described in the
previous section, which only considered positive
sources of uncertainty that had the same combi-
nations of uncertain traits.

To automatically create groups for tracking
the principle patterns explored during active
learning, k -means clustering is used to cluster
the samples’ explanations and weights. The
objective of k -means (using Lloyd’s algorithm)
is thus to minimize the pairwise squared de-
viations for all of the points in each cluster:∑k

i

∑
d∈U

∑
x,y∈Ci

∥xd − yd∥2. Each cluster cen-
troid is then used to keep track of the principle
sources of uncertainty for that cluster. The num-
ber of clusters, k is chosen by trying a wide range
of potential values and finding the value that
maximizes the proportion of points that share
their top uncertainty constraints with their re-
spective cluster centroids. As this ratio will likely
continue to trend upwards as k grows, k is simply
increased until adding another k will not improve
this proportion over some small threshold. It is
possible to largely capture all of the uncertainty
labels for a pool within a relatively small number
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of clusters, greatly simplifying the task of track-
ing what regions of uncertainty are explored. The
goal of this method is not to choose perfect inter-
pretable clusters, but to demonstrate that creat-
ing interpretable groupings based on uncertainty
is possible. We fully expect that there may be
other and better methods of doing this.

6.1. Experiments

We will automatically generate interpretable un-
certainty clusters for the ProPublica and Dark
Reactions datasets and consider the uncertainty
bias for each of these clusters. For both experi-
ments, we will train a model with an initial train-
ing set and iteratively add labeled points using
active learning. We will track both the number
of points queried from each cluster and the per-
cluster uncertainty biases.

ProPublica data Each data point was given
an uncertainty explanation with two constraints
(K = 2) and the uncertainty labels and weights
were clustered with k = 40 clusters. Eighty-three
percent of the points in the pool were in clus-
ters with centroids that matched their own un-
certainty constraints and 100% shared at least
one uncertainty label with their cluster’s cen-
troid. This shows that cluster centroids are in-
dicative of the points in their respective clusters
and that we can rely on the uncertainty labels
for the centroid to understand a cluster’s major
sources of uncertainty. The resulting uncertainty
bias charts per-cluster can be found in Figure 7.
The first two clusters, covering people in their

20s and men with a few priors, have high uncer-
tainty. One possible reason for this is that a high
number of priors might make the chance of recidi-
vism more certain and the age range and gender
are likely very common in the dataset and natu-
rally have high variance. Five of the six clusters
all display overall downward trends, showing that
uncertainty sampling is effectively able to reduce
the uncertainty on these clusters. It also pro-
vides support for the validity of our explanatory
uncertainty labels, as the frequency with which
clusters are queried correlates with the resolved
uncertainty that a model has for those clusters.

Dark Reactions dataset The Dark Reactions
data set was a challenge because there are many
more features, and yet fewer points, than the the

ProPublica dataset. We considered k = 7 clus-
ters and the associated uncertainty bias values.
To produce more specific class labels than the
ProPublica experiment, K = 10 attribute con-
straints were used to explain the certainty of each
point rather than K = 2. As K is much higher
for each explanation, consider the difference be-
tween the certainty for an individual constraint
and the average certainty over all K constraints
for a given uncertainty explanation. If the abso-
lute value of that difference is at least 2% (i.e.,
that specific constraint contributes more than av-
erage to the overall certainty), then it is included
in the explanation. By allowing a domain expert
to adjust this 2% cutoff parameter to be higher or
lower, we can adjust towards more precise expla-
nations of uncertainty. Explanations with no at-
tribute above the 2% threshold receive the expla-
nation “many sources.” The results can be found
in Figure 8.

Given that there are 274 attributes in the Dark
Reactions dataset, it is notable that most of the
curves do have prominent sources of uncertainty.
However most explored cluster has no attributes
that rise above the 2% threshold, indicating
that all K = 10 attributes contribute similarly
to the uncertainty of that cluster, possibly
indicating that it is highly varied. Three of the
clusters are explored together, and looking at the
explanations we can see that they have similar
sources of uncertainty. Overall, the observed
labels fit the intuition a domain expert might
have for these reactions. For instance, middle
temperature, high time reactions (represented by
the purple line) begin with a higher uncertainty
bias than short reactions (represented by both
the brown-green and light blue lines). Reactions
that take less than 20 hours generally do not
have the time to form crystalline products of the
size required for this type of chemistry. Thus,
these have high certainty because most will
fail. In contrast, middle temperature, long time
reactions have high potential to be successful,
although many are not, causing the uncertainty.

7. Discussion

One of the issues with the strategy outlined in
this work, as well as other strategies for explain-
ing individual predictions in model interpretabil-
ity, is that individual features or combinations of
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Figure 7: Left: Counts of labeled points from each of the top six labeled clusters as queries are
made. Right: The corresponding per-cluster uncertainty bias values.

said features are not always interpretable them-
selves. This was a significant challenge with the
Dark Reactions Project dataset. For instance,
anyone who has taken an undergraduate chem-
istry class would be able to deduce that O mols
refers to the amount of oxygen in a reaction.
However, even experienced chemists lack good
intuition for some descriptors. For example, a
descriptor in the DRP that conveys the range
for the geometric means of atomic radii weighted
by stoichiometry aggregated across compounds in
the organic role in a reaction. There are many de-
scriptors like this and, although a trained chemist
can certainly explain what this descriptor means
and how it is calculated, there is little good in-
tuition for what it would mean if a high value
of that descriptor were a source of uncertainty.
Combinations of features help to make up for this
by providing more detail and increasing the likeli-
hood that there are several interpretable features
from which to explain uncertainty. Even if there
were not, however, several individually uninter-
pretable or unintuitive features could be brought

together and they all, for instance, might inform
one another as they all reference similar physical
attributes. For chemists, at least, this issue of
uninterpretable features is partially remedied by
the batch recommendations, which paint a fuller
picture of what is being explored.

8. Conclusion

This work has demonstrated an application of
LIME to explain active learning queries. We also
defined a quantitative measure of uncertainty
bias. We first demonstrated how we can track the
exploration of groups of points with common un-
certainty and confirmed that uncertainty is being
resolved using the uncertainty bias measure. We
then demonstrated on more complex, real-world
datasets how regions of uncertainty can be gen-
erated automatically to create meaningful groups
to track during learning.
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Figure 8: Left: Counts labeled from each of the seven automatically-generated clusters for the Dark
Reactions dataset. Right: Corresponding uncertainty bias values for the top six most
queried clusters for the logistic regression model trained at each step.
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